Abstract
Microbial fuel cell-anaerobic digestion (MFC-AD) is a new sludge treatment technology with multi-path energy recovery. In this study, Fe0 and MnO2 with gradient concentration were added to investigate its effects on the sludge reduction, electrochemical performance, extracellular polymeric substances (EPS) of sludge, microbial community, electron distribution and energy flow of the MFC-AD system. Results showed that the highest sludge reduction 59% (49%), was obtained at 10 g/L Fe0 (5 g/L MnO2) adding and its total energy recovery efficiency increased by 100% (71%) compare to the control. Different Fe0 and MnO2 concentrations lead to different microbial mechanisms: at 10 g/L Fe0 or 5 g/L MnO2, it prefers to promote extracellular electrons transfer, favoring the Geobacter, Shewanella and Acinetobacter enrichment, while at 5 g/L Fe0 or 0.5 g/L MnO2 it plays a more important role in substrate metabolism of anaerobic digestion, with Clostridium, Roseomonas lacus, and Methylocystis enriched. Correspondingly, the electron quantity distribution from biomass to recovered energy ends (Current, CH4 and VFAs), was influenced by Fe0 and MnO2 concentration, indicating the controllability of the energy flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.