Abstract

The density functional theory (DFT) was employed to theoretically investigate the reaction mechanism of alcohol deoxygenation/trifluoromethylation. The substrate alcohol (R1) forms a complex (INT3) by binding with benzoxazole salts (NHCs). Under the influence of the photocatalyst ([IrIII]*) and quinuclidine, the C-H bond in INT3 is activated through either electron transfer-proton transfer (ETPT) or hydrogen atom transfer (HAT) mechanisms, resulting in the cleavage of C-O bonds and generation of deoxyalkyl radicals. The distribution of high-valent and low-valent states in the catalytic cycle of [Ir]-complexes is governed by the redox potential mechanism. Investigation was conducted on the source of hydrogen atom transfer reagents in the HAT reaction process under both optimal and nonoptimal conditions. The results demonstrate distinct reactivity among various radicals involved in the Cu-mediated radical capture process. Further investigations into INT3 activation modes, cycling facilitated by [Ir]-complexes, and understanding the role played by [Cu]-complexes in this reaction system provide a valuable theoretical foundation for comprehending and enhancing Ir/Cu bimetallic cooperative catalysis in alcohol deoxygenation/trifluoromethylation reactions. This provides anticipated theoretical support for future designs of more efficient and rational alcohol deoxygenation reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call