Abstract

The extensive usage of high-density polyethylene (HDPE) materials in marine environments raises concerns about their potential contribution to plastic pollution. Various factors contribute to the degradation of HDPE in marine environments, including UV radiation, seawater hydrolysis, biodegradation, and mechanical stress. Despite their supposed long lifespans, there is still a lack of understanding about the long-term degradation mechanisms that cause weathering of seawater-exposed HDPE products. In this research, the impact of UV radiation on the degradation of HDPE pile sleeves was studied in natural as well as laboratory settings to isolate the UV effect. After nine years of exposure to the marine environment in natural settings, the HDPE pile sleeves exhibited an increase in oxygen-containing surface functional groups and more morphological changes compared to accelerated UVB irradiation in the laboratory. This indicated that combined non-UV mechanisms may play a major role in HDPE degradation than UV irradiation alone. However, UVB irradiation was found to release dissolved organic carbon and total dissolved nitrogen from HDPE pile sleeves, reaching levels of up to 15 mg/L and 2 mg/L, respectively. Our findings underscore the significance of taking into account both UV and non-UV degradation mechanisms when evaluating the role of HDPE in contributing to marine plastic pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call