Abstract
The COVID-19 pandemic has led to a re-examination of the urban space, and the field of planning and architecture is no exception. In this study, a conditional generative adversarial network (CGAN) is used to construct a method for deriving the distribution of urban texture through the distribution hotspots of the COVID-19 epidemic. At the same time, the relationship between urban form and the COVID-19 epidemic is established, so that the machine can automatically deduce and calculate the appearance of urban forms that are prone to epidemics and may have high risks, which has application value and potential in the field of planning and design. In this study, taking Macau as an example, this method was used to conduct model training, image generation, and comparison of the derivation results of different assumed epidemic distribution degrees. The implications of this study for urban planning are as follows: (1) there is a correlation between different urban forms and the distribution of epidemics, and CGAN can be used to predict urban forms with high epidemic risk; (2) large-scale buildings and high-density buildings can promote the distribution of the COVID-19 epidemic; (3) green public open spaces and squares have an inhibitory effect on the distribution of the COVID-19 epidemic; and (4) reducing the volume and density of buildings and increasing the area of green public open spaces and squares can help reduce the distribution of the COVID-19 epidemic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.