Abstract

Bimetallic transition metal phosphide catalysts are promising materials for low-temperature, liquid-phase hydrogenation reactions. This work explores the chemoselective hydrogenation ability of RuMoP using various functionalized aromatic hydrocarbons to provide insight into how the functional groups compete for reduction on the surface of RuMoP. Using molecular hydrogen as the reductant, high selectivity (∼99%) to reduction of the substituent is achieved for the hydrogenation of electron withdrawing functionalities such as nitrobenzene, benzaldehyde, and benzophenone with RuMoP to yield aniline, benzyl alcohol, and diphenylmethanol, respectively. In contrast, aromatics with electron donating groups such as phenol, anisole, and toluene, show high ring hydrogenation selectivity (∼99%) to form cyclohexanol, methoxycyclohexane, and methyl cyclohexane, respectively, although the reaction proceeded slowly with RuMoP. Pyridine adsorption was studied via diffuse reflectance infrared Fourier transform spectroscopy...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.