Abstract

The superconducting order parameter of the first heavy-fermion superconductor CeCu_{2}Si_{2} is currently under debate. A key ingredient to understand its superconductivity and physical properties is the quasiparticle dispersion and Fermi surface, which remains elusive experimentally. Here, we present measurements from angle-resolved photoemission spectroscopy. Our results emphasize the key role played by the Ce 4f electrons for the low-temperature Fermi surface, highlighting a band-dependent conduction-f electron hybridization. In particular, we find a very heavy quasi-two-dimensional electron band near the bulk X point and moderately heavy three-dimensional hole pockets near the Z point. Comparison with theoretical calculations reveals the strong local correlation in this compound, calling for further theoretical studies. Our results provide the electronic basis to understand the heavy-fermion behavior and superconductivity; implications for the enigmatic superconductivity of this compound are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call