Abstract
Pollinators are vital for food security and the maintenance of terrestrial ecosystems. Bumblebees are important pollinators across northern temperate, arctic, and alpine ecosystems, yet are in decline across the globe. Vairimorpha bombi is a parasite belonging to the fungal class Microsporidia that has been implicated in the rapid decline of bumblebees in North America, where it may be an emerging infectious disease. To investigate the evolutionary basis of pathogenicity of V. bombi, we sequenced and assembled its genome using Oxford Nanopore and Illumina technologies and performed phylogenetic and genomic evolutionary analyses. The genome assembly for V. bombi is 4.73 Mb, from which we predicted 1,870 protein-coding genes and 179 tRNA genes. The genome assembly has low repetitive content and low GC content. V. bombi's genome assembly is the smallest of the Vairimorpha and closely related Nosema genera, but larger than those found in the Encephalitozoon and Ordospora sister clades. Orthology and phylogenetic analysis revealed 18 core conserved single-copy microsporidian genes including the histone acetyltransferase (HAT) GCN5. Surprisingly, V. bombi was unique to the microsporidia in not encoding the second predicted HAT ESA1. The V. bombi genome assembly annotation included 265 unique genes (i.e. not predicted in other microsporidia genome assemblies), 20% of which encode a secretion signal, which is a significant enrichment. Intriguingly, of the 36 microsporidian genomes we analyzed, 26 also had a significant enrichment of secreted signals encoded by unique genes, ranging from 6 to 71% of those predicted genes. These results suggest that microsporidia are under selection to generate and purge diverse and unique genes encoding secreted proteins, potentially contributing to or facilitating infection of their diverse hosts. Furthermore, V. bombi has 5/7 conserved spore wall proteins (SWPs) with its closest relative V. ceranae (that primarily infects honeybees), while also uniquely encoding four additional SWPs. This gene class is thought to be essential for infection, providing both environmental protection and recognition and uptake into the host cell. Together, our results show that SWPs and unique genes encoding a secretion signal are rapidly evolving in the microsporidia, suggesting that they underpin key pathobiological traits including host specificity and pathogenicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.