Abstract

Pixian Douban (PXDB) is a popular Chinese condiment for its distinctive flavor. Broad bean fermentation (Meju) is the most important process in the formation of flavor substances. Key flavors were analyzed qualitatively and quantitatively, and metagenomic technology was applied to study the microbial diversity during broad bean fermentation. In addition, the main metabolic pathways of key flavors were explored. Results indicated that Staphylococcus_gallinarum was the main microorganism in the microbial community, accounting for 39.13%, followed by Lactobacillus_agilis, accounting for 13.76%. Aspergillus_flavus was the fungus with the highest species abundance, accounting for 3.02%. The KEGG Pathway enrichment analysis showed that carbohydrate metabolism and amino acid metabolism were the main metabolic pathways. Glycoside hydrolase and glycosyltransferase genes were the most abundant, accounting for more than 70% of the total number of active enzyme genes. A total of 113 enzymes related to key flavors and 39 microorganisms corresponding to enzymes were annotated. And Staphylococcus_gallinarum, Lactobacillus_agilis, Weissella_confusa, Pediococcus_acidilactici, Staphylococcus_kloosii, Aspergillus_oryzae, and Aspergillus_flavus played a key role in the metabolic pathway. This study reveals the formation mechanism of key flavors in fermented broad bean, it is important for guiding the industrial production of PXDB and improving product quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call