Abstract

Phosphates are easily derived from transition metal phosphides under natural conditions, and the real roles of these two in catalytic reactions are not yet clear. Here, a multiphase FeP/Gd-Fe2 O3 shell-core structure photoanode was constructed and explored regarding the real role of FeP and its surface-reconstructed iron phosphate (Fe-Pi) in photoelectrochemical water oxidation. The FeP/Gd-Fe2 O3 photoanode exhibited an excellent photocurrent density of 2.56 mA cm-2 at 1.23 V versus the reversible hydrogen electrode, up to 4 times greater than those of the pristine α-Fe2 O3 (0.64 mA cm-2 ). Detailed studies showed that FeP could act as a photosensitizer to enhance light absorption and as a conductive layer to accelerate charge transfer. The FeP significantly enhanced the incident photon-to-current conversion efficiency of the photoanode and improved the electron transition within the photoanode. Naturally evolved Fe-Pi on the surface provided more active sites for water oxidation. They effectively passivated the surface capture state and synergistically inhibited the electron-hole recombination. Moreover, the in-situ constructed multiphase catalyst had a smaller interfacial contact resistance than the intentionally decorative cocatalyst. This work provides new insight into the understanding of the essential role of transition metal phosphides and their surface-reconstructed species in catalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.