Abstract

Enhancing electrocatalytic water splitting performance by modulating the intrinsic electronic structure is of great importance. Here, porous bimetallic oxide and chalcogenide nanosheets grown on carbon paper denoted as NiCo2X4/CP (X = O, S, and Se) are prepared to demonstrate how the anion components affect the electronic structures and thereby disclose the correlation between their intermediates interaction and catalytic activities. The experimental characterization and theoretical calculation demonstrate that Se and S substitution can promote the ratio of Co3+/Co2+ and thereby modulate the electronic structure accompanied with the upshift of d band centers, which not only enhance the inner conductivity but also regulate the interaction between the catalyst surface and intermediates, especially for the adsorption of absorbed H and hydroperoxy intermediates towards respective hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As a result, a full alkaline electrolyzer using NiCo2Se4/CP and NiCo2S4/CP as cathode and anode delivers a low voltage of 1.51 V at 10 mA·cm−2, which is comparable even superior to most transition metal-based electrolyzers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.