Abstract
AbstractElectrolyte engineering is crucial for improving cathode electrolyte interphase (CEI) to enhance the performance of lithium‐ion batteries, especially at high charging cut‐off voltages. However, typical electrolyte modification strategies always focus on the solvation structure in the bulk region, but consistently neglect the dynamic evolution of electrolyte solvation configuration at the cathode‐electrolyte interface, which directly influences the CEI construction. Herein, we reveal an anti‐synergy effect between Li+‐solvation and interfacial electric field by visualizing the dynamic evolution of electrolyte solvation configuration at the cathode‐electrolyte interface, which determines the concentration of interfacial solvated‐Li+. The Li+ solvation in the charging process facilitates the construction of a concentrated (Li+‐solvent/anion‐rich) interface and anion‐derived CEI, while the repulsive force derived from interfacial electric field induces the formation of a diluted (solvent‐rich) interface and solvent‐derived CEI. Modifying the electrochemical protocols and electrolyte formulation, we regulate the “inflection voltage” arising from the anti‐synergy effect and prolong the lifetime of the concentrated interface, which further improves the functionality of CEI architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.