Abstract
The durability of Polymer Electrolyte Membrane Fuel Cells under dynamic operation still needs to be improved. To understand the automotive voltage cycling-induced catalyst degradation, the loss of the electrochemically active surface area (ECSA) is investigated through an experimental campaign on Membrane Electrode Assemblies. Ad-hoc hydrogen/air accelerated protocols were designed to evaluate the voltage profile impact in a range relevant for both automotive and heavy duty transport application (<0.90 V). Besides the well-known aging dependence on the upper potential limit, this work evidences the critical role of the short-stops, characterized by low voltage transients. Effort was spent in studying this procedure parameters (voltage level, duration, scan rate, humidification). The accelerated ECSA loss is due to Pt nanoparticles coarsening as proved by transmission electron microscopy and is suspected dominated by Pt cathodic dissolution, incentivized during excursions towards very low potentials (<0.4 V). These findings help the development of system mitigation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.