Abstract
A pot experiment was carried out to investigate the effects of polyethylene (PE), a broadly utilized polymer type, on soil properties and lettuce growth. Two Zn- and Cd-contaminated soil samples were obtained from urban and rural areas of Greece, respectively. PE fragments (<5 mm) were added at different concentrations (2.5%, 5% w/w). Lettuce seeds were then planted in the pots in a completely randomized experiment. Plant growth patterns and tissue metal accumulation were investigated. The presence of PE in soils resulted in a reduction in pH, significantly enhanced the organic matter content, and increased the cation-exchange capacity. The availability of both metals was also increased. Metal migration from soil to plant was determined using appropriate tools and indexes. A higher metal concentration was detected in lettuce roots compared with that in the edible leaves. The presence of PE MPs (2.5% w/w) increased the amount of available Zn more than that of Cd in highly contaminated soils. When PE MPs were added to agricultural soil, Zn concentrations increased in the plant leaves by 9.1% (2.5% w/w) and 21.1% (5% w/w). Considering that both metals and microplastics cannot be easily and quickly degraded, the fact that the less toxic metal is more available to plants is encouraging. Taking into account the physicochemical soil features, decision makers may be able to limit the risks to human health from the coexistence of heavy metals and microplastics in soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.