Abstract

The charge transport properties of individual InSb nanowires based transistors are studied at 4.2 K in the quasiballistic regime. The energy level separations at zero magnetic field are extracted from a bias voltage spectroscopy. The magnetoconductance under a magnetic field applied perpendicularly to the nanowire axis is investigated up to 50 T. Owing to the magnetic reduction of the backscattering, the electronic states of the quasi-one-dimensional electron gas are revealed by Landauer-Buttiker conductance quantization. The results are compared to theoretical predictions revealing the spin and orbital degeneracy lifting. At sufficiently high magnetic field the measurements show the evolution to the quantum Hall effect regime with the formation of Landau orbits and conducting edge states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.