Abstract
Identification and quantification of sesame oil products are crucial due to the existing problems of adulteration with lower-priced oils and false labeling of sesame proportions. In this study, 1D CNN models were established to achieve discrimination of oil types and multiple quantification of adulteration using portable Raman spectrometer. An improved data augmentation method involving discarding transformations that alter peak positions was proposed, and synchronously injecting noise during geometric transformations. Furthermore, a novel neural network structure was introduced incorporating vector regression to accurately predict each component simultaneously. The proposed method has achieved higher accuracy in detecting multi-component adulteration compared with chemometrics (100 % accuracy in classifying different oils; R2 over 0.99 and RMSE within 2 % in predicting unknown adulterated samples). Finally, commercially available sesame oil products were tested and compared with gas chromatography and colorimetric methods, demonstrating the effectiveness of our proposed model in achieving higher detection accuracy at low-concentration adulteration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.