Abstract

AbstractAtomically dispersed metal‐nitrogen‐carbon catalysts have been extensively explored for various sustainable energy‐related reactions. From a material perspective, these catalysts are likely to consist of a combination of single‐atom, dual‐atom and possibly even multi‐atom sites. However, pinpointing their true active sites has remained a challenging task. In this study, a model catalyst is introduced, Co/CoMn‐NC, featuring both Co single‐atom sites and CoMn dual‐atom sites on a nitrogen‐doped carbon substrate. By employing a combination of X‐ray adsorption spectroscopy and density functional theory calculations, the atomic configuration of Co/CoMn‐NC has been determined. Density functional theory calculations are also used to unequivocally identify Co‐atom within the CoMn dual‐atom motif as the predominate active site of the Co/CoMn‐NC model catalyst toward oxygen reduction reaction (ORR), which is further confirmed by in situ Raman spectroscopy. The cooperative interactions between Co single‐atom sites and CoMn dual‐atom sites can finely tune the d‐band center and ameliorate the adsorption and desorption behaviors of the intermediates, thereby facilitating ORR kinetic. Overall, the study introduces a systematic strategy to elucidate the structure and the superiority of the model system and provides new insights into atomically dispersed multi‐metal active sites, showcasing that enhanced catalytic performance extends beyond unified diatomic sites or monatomic sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.