Abstract

Abstract Baseflow plays a crucial role in sustaining the alpine ecosystem during rainless or cold periods. Despite its importance, information on how and why baseflow has changed in the source region of the Yangtze River (SRYR) is sparse. In our study, statistical analysis and the elastic coefficient method were used to identify the dynamic characteristics of baseflow and the underlying causes. The results show that monthly baseflow contributed 62–97% of runoff with a mean value of 75%, and they followed remarkable increasing trends from 1957 to 2020. The contributions of precipitation, temperature, evapotranspiration, and ecological conservation programs (ECPs) on baseflow variations were 86, 53, −15, and −24%, respectively. However, their contributions differed across months. During the warm months of May to September, precipitation played a dominant role, followed by evapotranspiration. In contrast, during other colder months, temperature was dominant; meanwhile, the effect of precipitation was almost absent. Moreover, climatic change had a hysteretic effect on baseflow variation, with a maximum lag time of 10 months. Our results highlighted critical roles of both precipitation and temperature, and indicated that climate change, rather than ECPs, dominated the variation in baseflow in the SRYR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call