Abstract

BackgroundDenitrifying phosphorus removal sludge (DPRS) is widely adopted for nitrogen and phosphorus removal in wastewater treatment but faces threats from heavy metals. However, a lack of understanding of the taxon-specific heavy metal-resistance mechanisms hinders the targeted optimization of DPRS’s robustness in nutrient removal.ResultsWe obtained 403 high- or medium-quality metagenome-assembled genomes from DPRS treated by elevating cadmium, nickel, and chromium pressure. Then, the proteomic responses of individual taxa under heavy metal pressures were characterized, with an emphasis on functions involving heavy metal resistance and maintenance of nutrient metabolism. When oxygen availability was constrained by high-concentration heavy metals, comammox Nitrospira overproduced highly oxygen-affinitive hemoglobin and electron-transporting cytochrome c-like proteins, underpinning its ability to enhance oxygen acquisition and utilization. In contrast, Nitrosomonas overexpressed ammonia monooxygenase and nitrite reductase to facilitate the partial nitrification and denitrification process for maintaining nitrogen removal. Comparisons between phosphorus-accumulating organisms (PAOs) demonstrated different heavy metal-resistance mechanisms adopted by Dechloromonas and Candidatus Accumulibacter, despite their high genomic similarities. In particular, Dechloromonas outcompeted the canonical PAO Candidatus Accumulibacter in synthesizing polyphosphate, a potential public good for heavy metal detoxification. The superiority of Dechloromonas in energy utilization, radical elimination, and damaged cell component repair also contributed to its dominance under heavy metal pressures. Moreover, the enrichment analysis revealed that functions involved in extracellular polymeric substance formation, siderophore activity, and heavy metal efflux were significantly overexpressed due to the related activities of specific taxa.ConclusionsOur study demonstrates that heavy metal-resistance mechanisms within a multipartite community are highly heterogeneous between different taxa. These findings provide a fundamental understanding of how the heterogeneity of individual microorganisms contributes to the metabolic versatility and robustness of microbiomes inhabiting dynamic environments, which is vital for manipulating the adaptation of microbial assemblages under adverse environmental stimuli.CwPGueRoJa1DHw3799rWT1Video abstract

Highlights

  • Denitrifying phosphorus removal sludge (DPRS) is widely adopted for nitrogen and phosphorus removal in wastewater treatment but faces threats from heavy metals

  • These findings provide a fundamental understanding of how the heterogeneity of individual microorganisms contributes to the metabolic versatility and robustness of microbiomes inhabiting dynamic environments, which is vital for manipulating the adaptation of microbial assemblages under adverse environmental stimuli

  • Functional microbes inhabiting DPRS A total of 403 Metagenome-assembled genomes (MAGs) that met with the quality criteria were recovered, capturing 47.1 ± 5.8% of the identified ribosomal protein genes in DPRS metagenomes (Additional file 1: Fig. S1)

Read more

Summary

Introduction

Denitrifying phosphorus removal sludge (DPRS) is widely adopted for nitrogen and phosphorus removal in wastewater treatment but faces threats from heavy metals. A lack of understanding of the taxon-specific heavy metal-resistance mechanisms hinders the targeted optimization of DPRS’s robustness in nutrient removal. Wastewater treatment plants (WWTPs) inevitably become the source and sink of these toxic heavy metals [3]. Denitrifying phosphorus removal sludge (DPRS) is a typical artificial ecosystem widely adopted in biological processes (e.g., anaerobic/anoxic/ aerobic process) by numerous WWTPs worldwide [4, 5]. Heavy metals can cause dysfunctions of proteins and inhibit microbial activities such as nitrification [7, 8] and eventually attenuate the treatment efficiency [5, 9]. A better understanding of the heavy metal-resistance strategies adopted by DPRS microbiomes might improve their robustness for nutrient removal

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.