Abstract

The effects of deprotonation on the (13)C and (31)P chemical shielding tensors of L-O-phosphoserine are revealed by using solid-state NMR spectroscopy and ab initio calculations. The characteristic changes in some principal elements of the (13)C and (31)P chemical shift tensors have been detected during successive steps of deprotonation of carboxyl, phosphate, and amide functional groups. The calculations carried out in a polarizable continuum taking into account the effects of the surroundings have shown their ability to reproduce correctly the changes of the principal values induced by deprotonation and to provide precious information, which is very difficult to obtain experimentally, about the concurrent changes in the orientation of chemical shielding tensors in the molecular frame. The experimentally observed subtle effects related to the deprotonation-induced modifications of intermolecular contacts involving hydrogen bonding as well as the influence of counterions on the (13)C and (31)P principal elements of the chemical shift tensors are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.