Abstract
Capturing and depicting the multimodal tissue information of tissues at the spatial scale remains a significant challenge owing to technical limitations in single-cell multi-omics and spatial transcriptomics sequencing. Here, we developed a computational method called SpaTrio that can build spatial multi-omics data by integrating these two datasets through probabilistic alignment and enabling further analysis of gene regulation and cellular interactions. We benchmarked SpaTrio using simulation datasets and demonstrated its accuracy and robustness. Next, we evaluated SpaTrio on biological datasets and showed that it could detect topological patterns of cells and modalities. SpaTrio has also been applied to multiple sets of actual data to uncover spatially multimodal heterogeneity, understand the spatiotemporal regulation of gene expression, and resolve multimodal communication among cells. Our data demonstrated that SpaTrio could accurately map single cells and reconstruct the spatial distribution of various biomolecules, providing valuable multimodal insights into spatial biology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.