Abstract

A novel diagnostic is proposed to characterize the maturity of soot particles in a laminar axisymmetric coflow ethylene diffusion flame in terms of the spectral dependence of soot absorption function. The method relies on the combination of line-of-sight attenuation (LOSA) and emission measurements at four wavelengths (500, 532, 660 and 810 nm). The analysis of the measured signals enables the determination of soot temperature, soot volume fraction, soot maturity and the contribution of soot scattering to extinction. The analysis of extinction and emission measurements considers the spatial variation of soot optical properties. The introduction of a maturity index allows the evaluation of soot maturity based on the spectral variation of the soot absorption function. The maturity index is correlated with the organic or the mature soot content and finally in terms of the absolute value of absorption function at 810 nm. The methodology is validated using a set of synthetic spectral LOSA and emission signals representing experimental measurements based on numerical results obtained using the CoFlame code. A sensitivity analysis of the Abel inversion is also performed to properly address the effect of deconvolution procedure. Finally, the proposed method is applied to analyze the experimental data of spectrally-resolved LOSA and emission acquired in a laminar axisymmetric coflow ethylene diffusion flame established on a Gülder burner. The two-dimensional distributions of soot temperature, soot volume fraction, soot maturity, and the ratio of total scattering to absorption are determined. Mature soot particles are found on the top of the flame in the centerline region and also in the outer edge of the flame wing displaying strong gradients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.