Abstract

The oxidation kinetics of Ag nanoparticles (NPs) embedded in an aluminum oxide film deposited on quartz have been assessed via an in situ real-time monitoring of plasmonic evolution during thermal processing in air. A temperature-dependent exponential decay in the peak intensity of Ag NPs’ absorption was revealed, which was analyzed through first-order kinetics. An activation energy of 3.28 (±0.27)×104Jmol−1 was estimated in good agreement with the oxidative dissolution of similar-sized Ag NPs in liquid phase reported by Ho et al. [11]. Results are discussed in the context of mechanistic parallelisms and physico-chemical interactions in the air-atmosphere/nanocomposite-film/substrate system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.