Abstract

Herein, we synthesized a Fe, Ni dual-metal embedded in porous nitrogen-doped carbon material to endow higher turnover frequency (TOF), lower H2O2 yield, and thus superior durability than for the single-atom catalyst for oxygen reduction in acid media. Quantitative X-ray absorption near edge structure (XANES) fitting and density functional theory (DFT) calculation were implemented to explore the active sites in the catalysts. The results suggest FeNi-N6 with type I (each metal atom coordinated with four nitrogen atoms) instead of type II configuration (each metal atom coordinated with three nitrogen atoms) dominates the catalytic activity of the noble-metal free catalyst (NMFC). Further, theoretical calculation reveals that the oxygen reduction reaction (ORR) activity trend of different moieties was FeNi-N6 (type I) > FeNi-N6 (type II) > Fe-N4 > Fe2-N6. Our research represents an important step for developing dual-metal doping NMFC for proton exchange membrane fuel cells (PEMFCs) by revealing its new structural configuration and correlation with catalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call