Abstract

Non-covalent interactions (NCI) define the rules underlying crystallisation, self-assembly and drug-receptor docking processes. A novel NCI descriptor, based on the reduced electron density gradient (RDG), that enables easy visualisation of the zones of the electron density (ED) involved in either the supposedly attractive (dispersive, hydrogen bonding) or allegedly repulsive (steric) intermolecular interactions, was recently developed by Johnson et al. Here, it is applied for the first time to EDs derived from single-crystal X-ray diffraction data. A computer code handling both experimental and ab initio EDs in the RDG-NCI perspective was purposely written. Three cases spanning a wide range of NCI classes were analysed: 1) benzene, as the prototype of stacking and weak CH···π interactions; 2) austdiol, a heavily functionalised fungal metabolite with a complex hydrogen-bonding network; 3) two polymorphs of the heteroatom-rich anti-ulcer drug famotidine, with van der Waals and hydrogen-bond contacts between N- and S-containing groups. Even when applied to experimental EDs, the RDG index is a valuable NCI descriptor that can highlight their different nature and strength and provide results of comparable quality to ab initio approaches. Combining the RDG-NCI study with Bader's ED approach was a key step forward, as the RDG index can depict inherently delocalised interactions in terms of extended and flat RDG isosurfaces, in contrast to the bond path analysis, which is often bounded to a too localised and possibly discontinuous (yes/no) description. Conversely, the topological tool can provide quantitative insight into the simple, qualitative NCI picture offered by the RDG index. Hopefully, this study may pave the way to a deeper analysis of weak interactions in proteins using structural and ED information from experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.