Abstract

AimsDahl salt-sensitive (SS) rats develop similar prediabetes lesion characteristics, such as impaired glucose tolerance (IGT), when compared with the salt resistant rat. In this study, we evaluate the risk of high glucose intake during prediabetes and reveal the metabolic pathways relevant to the pathophysiology of prediabetes to diabetes using the SS rat model and compared this with the salt-resistant consomic SS.13BN rat model. MethodsSS rats were fed with normal chow ±10% glucose solution ad libitum for five weeks. The same experimental treatment was performed on the SS.13BN rats. Metabolites derived from the serum and liver tissue were measured through biochemical and metabolomics analyses. Multivariate, pathway enrichment, and metabolic correlation network analyses were performed based on the metabolomics data. ResultsBiochemical analysis revealed that serum triglyceride (TG) significantly increased with a significant decrease in serum total cholesterol (TC) after high glucose intake in the SS rat. Metabolic pathway analysis revealed that high glucose intake interfered with galactose, glyoxylate, and dicarboxylate metabolism, most evidently in the SS rat. Hepatic l-lactic acid content increased in the SS rat after high glucose intake, whereas the opposite was observed in SS.13BN rats. Metabolic correlation network analysis based on serum metabolites revealed that urea and l-valine had higher metabolic centrality in the SS rat. ConclusionOur findings revealed that high glucose intake can significantly stimulate hypertriglyceridemia and reduce serum TC level. The profoundly altered metabolic pathway included galactose, glyoxylate, and dicarboxylate metabolism. l-lactic acid was screened as a biomarker in liver, whereas l-valine and urea were screened as hub metabolites in serum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call