Abstract

Low-temperature plasmas have quickly emerged as alternative and unconventional types of radiation that offer great promise for various clinical modalities. As with other types of radiation, the therapeutic efficacy and safety of low-temperature plasmas are ubiquitous concerns, and assessing their dose rates is crucial in clinical settings. Unfortunately, assessing the dose rates by standard dosimetric techniques has been challenging. To overcome this difficulty, we proposed a dose-rate assessment framework that combined the predictive modeling of plasma-induced damage in DNA by machine learning with existing radiation dose-DNA damage correlations. Our results indicated that low-temperature plasmas have a remarkably high dose rate that can be tuned by various process parameters. This attribute is beneficial for inducing radiobiological effects in a more controllable manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.