Abstract

The study of mechanical and chemical phenomena arising within a material that is being subjected to external stress is termed mechanochemistry (MC). Recent advances in MC have revealed the prospect not only to enable a greener route to chemical transformations but also to offer previously unobtainable opportunities in the production and screening of biomaterials. To date, the field of MC has been constrained by the inability of current characterisation techniques to provide essential localised multiscale chemically mapping information. A potential method to overcome this is secondary electron hyperspectral imaging (SEHI). SEHI is a multiscale material characterisation technique applied within a scanning electron microscope (SEM). Based on the collection of secondary electron (SE) emission spectra at low primary beam energies, SEHI is applicable to the chemical assessment of uncoated polymer surfaces. Here, we demonstrate that SEHI can provide in situ MC information using poly(glycerol sebacate)-methacrylate (PGS-M) as an example biomaterial of interest. This study brings the use of a bespoke in situ SEM holder together with the application of SEHI to provide, for the first time, enhanced biomaterial mechanochemical characterisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.