Abstract

Type 2 diabetes mellitus (T2DM) drastically affects the population of Middle East countries with an ever-increasing number of overweight and obese individuals. The precise links between T2DM and gut microbiome composition remain elusive in these populations. Here, we performed 16 S rRNA and ITS2- gene based microbial profiling of 50 stool samples from Emirati adults with or without T2DM. The four major enterotypes initially described in westernized cohorts were retrieved in this Emirati population. T2DM and non-T2DM healthy controls had different microbiome compositions, with an enrichment in Prevotella enterotype in non-T2DM controls whereas T2DM individuals had a higher proportion of the dysbiotic Bacteroides 2 enterotype. No significant differences in microbial diversity were observed in T2DM individuals after controlling for cofounding factors, contrasting with reports from westernized cohorts. Interestingly, fungal diversity was significantly decreased in Bacteroides 2 enterotype. Functional profiling from 16 S rRNA gene data showed marked differences between T2DM and non-T2DM controls, with an enrichment in amino acid degradation and LPS-related modules in T2DM individuals, whereas non-T2DM controls had increased abundance of carbohydrate degradation modules in concordance with enterotype composition. These differences provide an insight into gut microbiome composition in Emirati population and its potential role in the development of diabetes mellitus.

Highlights

  • Type 2 diabetes mellitus (T2DM) drastically affects the population of Middle East countries with an ever-increasing number of overweight and obese individuals

  • All T2DM individuals were under Dipeptidyl peptidase-4 inhibitors (DPP4i) and metformin treatment

  • We characterized for the first time, the prokaryotic and fungal microbiome profiles associated with T2DM and non-T2DM controls in an Emirati population where the study population was unmatched for age, BMI, and diet

Read more

Summary

Introduction

Type 2 diabetes mellitus (T2DM) drastically affects the population of Middle East countries with an ever-increasing number of overweight and obese individuals. Functional profiling from 16 S rRNA gene data showed marked differences between T2DM and non-T2DM controls, with an enrichment in amino acid degradation and LPS-related modules in T2DM individuals, whereas non-T2DM controls had increased abundance of carbohydrate degradation modules in concordance with enterotype composition These differences provide an insight into gut microbiome composition in Emirati population and its potential role in the development of diabetes mellitus. Among these, were reported a lowered abundance of butyrate-producing microbes, an altered firmicutes / bacteroidetes ratio, and an increase in opportunistic www.nature.com/scientificreports pathogens, such as Bacteroides caccae, Clostridium hathewayi, Clostridium ramosum, Clostridium symbiosum, Eggerthella lenta and E. coli[3,7,8,9,10] These changes may induce disturbances in host gut barrier, in metabolic homeostasis and low-grade inflammation, in short chain fatty acid synthesis and fat deposition as well as hormonal regulation for involving glucagon-like peptide-1 synthesis. We conducted a phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) functional analyses based on 16 S rRNA gene abundance profiles to gain deeper insight on potential functional impact on the host in T2DM from this Emirati population

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.