Abstract

The structure and interactions of oxygenated aromatic molecules are of atmospheric interest due to their toxicity and as precursors of aerosols. Here, we present the analysis of 4-methyl-2-nitrophenol (4MNP) using chirped pulse and Fabry-Pérot Fourier transform microwave spectroscopy in combination with quantum chemical calculations. The rotational, centrifugal distortion, and 14N nuclear quadrupole coupling constants of the lowest-energy conformer of 4MNP were determined as well as the barrier to methyl internal rotation. The latter has a value of 106.4456(8) cm-1, significantly larger than those from related molecules with only one hydroxyl or nitro substituent in the same para or meta positions, respectively, as 4MNP. Our results serve as a basis to understand the interactions of 4MNP with atmospheric molecules and the influence of the electronic environment on methyl internal rotation barrier heights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.