Abstract
In general, a pair of uncorrelated Gaussian states mixed in a beam splitter (BS) produces a correlated state at the output. However, when the inputs are identical Gaussian states the output state is equal to the input, and no correlations appear, as the interference had not taken place. On the other hand, since physical phenomena do have observable effects, and the BS is there, a question arises on how to reveal the interference between the two beams. We prove theoretically and demonstrate experimentally that this is possible if at least one of the two beams is prepared in a discordant, i.e., Gaussian correlated, state with a third beam. We also apply the same technique to reveal the erasure of polarization information. Our experiment involves thermal states and the results show that Gaussian discordant states, even when they show a positive Glauber P-function, may be useful to achieve specific tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.