Abstract

Deformation behaviour of multicomponent metallic glasses are determined by the evolution/reconfiguration of the short- and medium-range order (SRO and MRO) atomic structures. A precise understanding of how different atom species rearrange themselves in different stress states is still a great challenge in materials science and engineering. Here, we report a systematic and synergetic research of using electron microscopy imaging, synchrotron X-ray total scattering plus empirical potential structure refinement (EPSR) modelling to study in situ the deformation of a Zr-based multicomponent metallic glassy alloy with 5 elements. Systematic and comprehensive analyses on the characteristics of the SRO and MRO structures in 3D and the decoupled 15 partial PDFs at each stress level reveal quantitatively how the SRO and MRO structures evolve or reconfigure in 3D space in the tensile and compressive stress states. The results show that the Zr-centred atom clusters have low degree of icosahedra and are the preferred atom clusters to rearrange themselves under the tensile and compressive stresses. The Zr-Zr is the dominant atom pair in controlling the shear band's initiation and propagation. The evolution and reconfiguration of the MRO clusters under different stress states are realised by changing the connection modes between the Zr-centred atom clusters. The coordinated changes of both bond angles and bond lengths of the Zr-centred clusters are the dominant factors in accommodating the tensile or compressive strains. While other solute-centred MRO clusters only play minor roles in the atomic structure reconfiguration/evolution. The research has demonstrated a synergetic and multimodal materials operando characterization methodology that has great application potential in design and development of high performance multiple-component engineering alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call