Abstract
The cultivation industry occupies a large proportion of greenhouse gas emissions in agriculture. Assessing greenhouse gas emissions from the cultivation industry is pivotal for mitigating emissions and promoting sustainable cultivation. Utilizing greenhouse gas emission calculation methods recommended by the Intergovernmental Panel on Climate Change (IPCC) and other methods, this work evaluated annual emissions and the emission structure of major crops from 2005 to 2021 in the Chengdu Plain, a significant agricultural region in Southwest China. We identified nitrogen fertilizer as the primary contributing factor to high emissions from cultivation production. Subsequently, we analyzed the trend and utilization of nitrogen fertilizer, which proposes essential strategies for reducing greenhouse gas emissions. The results showed that greenhouse gas (GHG) emissions from the cultivation industry in the Chengdu Plain exhibited a growth, fluctuation, and eventual decline trend from 2005 to 2021. The emissions increased from 5,148,900 t in 2005 to 6,289,700 t in 2009, representing a 22.16% increase, and subsequently decreased to 5,109,900 t in 2021, marking a 23.31% decrease. Nitrogen fertilizer application emerges as the primary source of GHG emissions, constituting approximately half of the total, with nitrogen fertilizer manufacturing contributing significantly as well, collectively amounting to about 70%. We also found that the proportion of greenhouse gas emissions attributed to cash crop cultivation has gradually increased over the last decade. Among these crops, vegetables exhibit the highest emissions, comprising nearly half of the total emissions from 2019 onwards. However, the nitrogen fertilizer use efficiency of cash crops is less than 30%, with higher nitrogen surplus, ammonia volatilization, and nitrogen leaching per unit area, and the total amount is higher than that of grain crops. Among cash crops, vegetables exhibit the highest amount of nitrogen surplus, ammonia volatilization, and nitrogen leaching, constituting nearly half of the total amount in the study area since 2019. Our findings significantly affect sustainable and low-carbon cultivation industry development in the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.