Abstract

The ene-type reaction between (dithio)carboxylic acids and alkenes has been studied computationally by DFT and topological (analysis of the electron localization function, ELF) methods. The reaction proceeds under kinetic control and the observed differences in regioselectivity are well-explained by the relative stability of the different transition structures. In agreement with experimental observations, electron-rich alkenes lead to Markownikoff adducts while electron-poor alkenes lead to Michael adducts. In all cases the reaction proceeds through an only transition structure (one kinetic step) although a different synchronicity was observed depending on the alkene electronics. The ELF analysis of the reactions corroborates the existence of a transient carbocation (hidden intermediate) in the reactions with electron-rich alkenes. On the other hand, electron-poor alkenes proceed through a more synchronous concerted mechanism. It can be predicted that with electron-rich alkenes bearing highly donating the transient carbocations might be captured by a nucleophile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.