Abstract

Supercooled liquids are proposed to be dynamically heterogeneous, with regions exhibiting relaxation time scales that vary in space and time. Measurement of the distribution of such time scales could be an important test of various proposed theories of vitrification. Single molecule fluorescence experiments attempt to uncover this distribution, typically by embedding single molecule probes into these systems and monitoring their individual rotational relaxations from a computed autocorrelation function (ACF). These ACFs may exhibit stretched exponential decays, with the value of the stretching exponent assumed to report the set of dynamical environments explored by the probe. Here, we use simulated trajectories of rotation to investigate how the time scale of dynamic exchange relative to underlying relaxation time scales in the system affects probe ability to report the distribution relaxation of time scales present. We find that dynamically heterogeneous regions must persist for approximately 50 times the median relaxation time scale for a single molecule to accurately report the full distribution of time scales it has experienced. In systems with faster dynamic exchange, single molecule ACFs average over successive environments, limiting the reported heterogeneity of the system. This leads to degeneracies in stretching exponent for systems with different underlying relaxation time distributions. We show that monitoring single molecule median stretching exponent as a function of trajectory length or simultaneously measuring median stretching exponent and measured relaxation time distribution at a given trajectory length can resolve these degeneracies, revealing the underlying set of relaxation times as well as median exchange time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call