Abstract

Coherent two-dimensional spectroscopy in the IR or the visible region is very effective for studying correlations, energy relaxation/transfer pathways in complex multi-chromophore or multi-mode systems. However, it is usually restricted up to two-quanta excitations and their properties. In this paper, an arbitrary level of excitation is suggested as the utility to scan nonlinear potential surfaces of quantum systems up to a desired excitation degree. This can be achieved by a simple three-pulse laser spectroscopy approach. Accurate evaluation of high-level anharmonicities as well as transition amplitudes can be directly obtained. Additionally, questions regarding the quantum nature of the probed system can be addressed by studying absolute peak positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.