Abstract

This study aimed to evaluate the chemical form variation of Mn in Phytolacca acinosa Roxb. residue under different pyrolysis temperatures and its contribution to decontamination efficacy of lead (Pb(II)) and tetracycline (TC). The results illuminated that pyrolysis temperature is a crucial factor of fraction and bioavailability of Mn and other heavy metals in the resultant biochar and pyrolysis temperature under 450 °C may be most suitable for reutilization without potential risk. The Mn-enriched phytolaccaceae biochar (PSB450) exhibited more preferential sorption toward Pb(II) (279.33 mg/g) and TC (47.51 mg/g) than pristine phytolaccaceae biochar in the single system, mainly due to the formation of MnOx and Mn minerals via pyrolysis. Binary adsorption showed that Pb(II) would serve as a bridge between PSB450 and TC by complexation within a limited concentration range, thus facilitating their joint decontamination. This study provided an efficient alternative approach for reutilization of Mn-contaminated biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.