Abstract

Sludge recycling in Fenton oxidation was performed following the simplest procedure for studying the reaction phenomena and the role of Fe using methanol as the model compound and crepe rubber wastewater (CRWW) as the industrial application. CRWW is odorous and high in organics, nitrogen and phosphorus. Despite the capability of degrading hardly decomposable substances, large Fe3+ sludge production confines the useful application of Fenton oxidation. This sludge is hazardous due to residual organics adsorption from treated wastewater. Batch-mode experiments were performed at 25 °C and pH 2–3 for 24 h. After neutralization (adjusting pH > 9) and centrifugation, concentrated sludge was applied in the subsequent Fenton run as the Fe source. TOC reductions of 100% and 97% in conventional Fenton and 100% and 77% in sludge reuse systems were achieved for methanol and CRWW solutions, respectively, for initial COD:H2O2:Fe2+ mass ratio of 1:8:2 with effective reuse cycles. Fe in the sludge system behaved primarily as a heterogeneous catalyst, while dissolved Fe contributed to homogeneous catalytic reactions. Dissolved Fe2+ and total Fe were accumulated in sludge runs for enhancing the homogeneous process. Outcomes indicate that the simplest sludge reuse method experimented in this work can be effectively applied as an environmentally and economically promising method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call