Abstract

Evolutionary computation techniques have had limited capabilities in solving large-scale problems due to the large search space demanding large memory and much longer training times. In the work presented here, a genetic programming like rich encoding scheme has been constructed to identify building blocks of knowledge in a learning classifier system. The fitter building blocks from the learning system trained against smaller problems have been utilized in a higher complexity problem in the domain to achieve scalable learning. The proposed system has been examined and evaluated on four different Boolean problem domains: 1) multiplexer, 2) majority-on, 3) carry, and 4) even-parity problems. The major contribution of this paper is to successfully extract useful building blocks from smaller problems and reuse them to learn more complex large-scale problems in the domain, e.g., 135-bit multiplexer problem, where the number of possible instances is 2 135 ≈ 4 × 10 40 , is solved by reusing the extracted knowledge from the learned lower level solutions in the domain. Autonomous scaling is, for the first time, shown to be possible in learning classifier systems. It improves effectiveness and reduces the number of training instances required in large problems, but requires more time due to its sequential build-up of knowledge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.