Abstract
Partially remediated gray (reuse) water will likely find increasing use in a variety of applications owing to the increasing scarcity of freshwater. We aimed to determine if a model fish, the goldfish, could sense reuse water using olfaction (smell), and if 30min or 7d (acute) and 60d (sub-chronic) exposures would affect their olfactory responses to natural odorants. We examined olfaction as previous studies have found that numerous chemicals can impair the olfactory sense, which is critical to carrying out numerous life-sustaining behaviors from feeding to mating. We also examined if fish olfactory and liver tissues would mount a response in terms of biotransformation enzyme gene expression, and whether treatment of reuse water with UV/H2O2 ameliorated adverse effects following reuse water exposure. We found that fish olfactory tissue responded to reuse water as it would to a natural odorant and that UV/H2O2 treatment had no influence on this. With acute exposures, olfactory impairment was apparent regardless of water type (e.g. responses of 23–55% of control), but in sub-chronic exposures, only the untreated reuse water caused olfactory impairment. The exposure of fish to reuse water increased the expression of one enzyme (CYP1A; >2.5–6.5 fold change) and reuse water treatment with UV/H2O2 reversed the effect. There was a seasonal effect that was likely due to changes in water quality (60d summer exposure impaired olfaction whereas spring and fall exposures did not). Overall, the data suggest that reuse water may be detected by olfaction, impair olfactory responses in fish receiving unavoidable exposures, and that exposure duration and season are important factors to consider regarding adverse effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.