Abstract

This article describes the recycling of coarse and fine fractions and powder from construction and demolition waste (CDW) using alkaline activation technology (geopolymerization). The CDW sample used corresponds to a mixture (mixed waste) of concrete (Co), ceramics (Ce) and masonry (M). Co, Ce and M (CDW-Mixed) powders were used as geopolymer precursors. As an alkaline activator, a mixture of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) was used. From CDW-Mixed, a hybrid cement added with 10% ordinary Portland cement (OPC) was synthesized to promote curing at room temperature (25 °C). From the alkali-activated hybrid cement and the incorporation of mixed recycled aggregates (gravel and sand), applications of mortars, concretes, fiber-reinforced materials and prefabricated units, such as solid blocks, perforated (hollow) blocks and pavers, were produced. The results of the physical–mechanical characterization validate the application potential of these CDW-based materials in the construction sector. Compressive strengths of up to 40.5 MPa for mortar and 36.9 MPa for concrete were obtained after 90 days of curing at room temperature ≈ 25 °C. Similarly, a life cycle analysis (LCA) associated with raw materials demonstrated the environmental sustainability (44% lower carbon footprint) of mixed alkali-activated CDWs compared to conventional materials based on OPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.