Abstract

Iron oxide nanoparticles (NPs) are nontoxic and abundant materials which have long been investigated as reusable catalysts in oxidation reactions, but their use so far has been hampered by a low selectivity. Here, unsupported iron oxide NPs have been found to successfully catalyze the microwave-assisted oxidation of primary and secondary alcohols to their respective aldehydes and ketones with a high selectivity when N-methylmorpholine N-oxide was used as the terminal oxidant. The crystalline phase and size of the iron-based catalyst have a drastic effect on its activity, with small magnetite (Fe3O4) NPs being the optimal catalyst for this reaction. The nanocatalyst could be easily recovered by magnetoseparation and successfully recycled four times without any need for special pretreatment or reactivation step and with a minimal loss of activity. The subsequent loss of activity was attributed to the transition from magnetite (Fe3O4) to maghemite (γ-Fe2O3), as confirmed by X-ray diffraction, Fourier transform infrared, and X-ray absorption near-edge spectroscopy. The nanocatalyst could then be reactivated by the high-temperature microwave treatment and used again for the microwave-assisted oxidation reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.