Abstract

Mercury is a bioaccumulative and highly toxic heavy metal. Thus, the removal and detection of Hg2+ from the environment is a major challenge. This paper reports a novel bio-nanomaterial for the simultaneous determination and removal of Hg2+ with the use of rGO-Fe3O4 functionalized with Hg2+-specific thymine oligonucleotide (T-DNA). T-DNA interacts with Hg2+ and changes from having a random coil into a hairpin structure, thereby increasing the fluorescence of SYBR Green I. Such fluorescence turn-on process allows the detection of Hg2+ in the concentration range of 1–20ng/mL, with a detection limit of 0.82ng/mL. Removal is achieved by exploiting the T-Hg2+-T base pairs and the large surface area of graphene; these bio-nanocomposites exhibit excellent removal efficiency (over 80%) and rapid separation from the aqueous solution. Moreover, bio-nanomaterials can be regenerated after a simple treatment. The proposed method also demonstrates the evident practicability of the simultaneous detection and removal of Hg2+ in lake water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.