Abstract
Wound healing is delayed due to the infection and biofilm formation of antibiotic-resistant species of gram-negative bacteria especially Pseudomonas aeruginosa and Escherichia coli. Antibacterial photodynamic therapy provides an efficient therapeutic strategy for overcoming drug resistance by producing reactive oxygen species (ROS) and reactive nitrogen species (RNS). Here, we have designed a low-cost light emitting diode (LED) based reusable and non-invasive titanium dioxide nanoparticles patch which is sandwiched between the thin polymer layers. The light-induced pore formation in the polymeric film due to the free radical, in turn, passes through the system and kills the bacteria rather than nanoparticles entering the system resulting in the reusability nature of the patch. The patch's in vitro antibacterial and antibiofilm activity and their mechanism (synergic ROS-induced RNS) were studied. In addition, the reusable antibacterial properties, biocompatibility and wound-healing properties of the patch were also successfully elucidated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.