Abstract

We describe a new class of systems exhibiting return point memory (RPM), different from those discussed before in the context of ferromagnets. We show numerically that one-dimensional random Ising antiferromagnets have exact RPM when evolving from a large field, but not when started at finite field, unlike the ferromagnetic case. This implies that the standard approach to understanding ferromagnetic RPM will fail for this case. We also demonstrate RPM with a set of variables that keeps track of spin flips at each site. Conventional RPM for the spins is a projection of this result, suggesting that spin flip variables might be a more fundamental representation of the dynamics. We also present a mapping that embeds the antiferromagnetic chain in a two-dimensional ferromagnet, and prove RPM for spin-exchange dynamics in the interior of the chain with this mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.