Abstract

We study convergence of return- and hitting-time distributions of small sets $E_{k}$ with $\unicode[STIX]{x1D707}(E_{k})\rightarrow 0$ in recurrent ergodic dynamical systems preserving an infinite measure $\unicode[STIX]{x1D707}$. Some properties which are easy in finite measure situations break down in this null-recurrent set-up. However, in the presence of a uniform set $Y$ with wandering rate regularly varying of index $1-\unicode[STIX]{x1D6FC}$ with $\unicode[STIX]{x1D6FC}\in (0,1]$, there is a scaling function suitable for all subsets of $Y$. In this case, we show that return distributions for the $E_{k}$ converge if and only if the corresponding hitting-time distributions do, and we derive an explicit relation between the two limit laws. Some consequences of this result are discussed. In particular, this leads to improved sufficient conditions for convergence to ${\mathcal{E}}^{1/\unicode[STIX]{x1D6FC}}{\mathcal{G}}_{\unicode[STIX]{x1D6FC}}$, where ${\mathcal{E}}$ and ${\mathcal{G}}_{\unicode[STIX]{x1D6FC}}$ are independent random variables, with ${\mathcal{E}}$ exponentially distributed and ${\mathcal{G}}_{\unicode[STIX]{x1D6FC}}$ following the one-sided stable law of order $\unicode[STIX]{x1D6FC}$ (and ${\mathcal{G}}_{1}:=1$). The same principle also reveals the limit laws (different from the above) which occur at hyperbolic periodic points of prototypical null-recurrent interval maps. We also derive similar results for the barely recurrent $\unicode[STIX]{x1D6FC}=0$ case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call