Abstract

The possibility of inducing transplantation tolerance by somatic gene transfer is under investigation in our miniature swine model. As a crucial step in this project, we have used a retroviral vector engineered to express both a drug-resistance gene (Neo) and a swine class II DRB cDNA to transduce porcine bone marrow (BM) cells. Analysis of cultured swine fibroblasts exposed to high-titer viral supernatants demonstrated that drug resistance had been conferred and that transferred vector sequences were transcribed appropriately. Similar transduction studies with swine BM demonstrated the transfer of drug resistance to as high as 14% of colony-forming unit-granulocyte- macrophage (CFU-GM). Using polymerase chain reaction (PCR) of cDNA, vector-derived allogeneic DRB transcripts were detected in colonies derived from primitive CFU-Mix and high proliferative potential-colony- forming cell (HPP-CFC), as well as in drug-resistant GM colonies grown from transduced bone marrow (BM) maintained in long-term BM cultures (LTBMCs) for up to 5 weeks. These results indicate that a significant proportion of both colony-forming progenitors and LTBMC-initiating cells were transduced with the DRB-recombinant retroviral vector and that both vector-derived genes were expressed in the differentiated progeny of these cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.