Abstract

The Cas-Br-E murine leukemia virus (MuLV) induces a spongiform myeloencephalopathy resulting in a progressive hindlimb paralysis. We have used in situ hybridization with a Cas-Br-E MuLV-specific probe to study viral expression in the central nervous system. Infected cells were concentrated in regions where spongiform lesions and gliosis are detected (lumbosacral spinal cord, brainstem, deep cerebellar regions), suggesting a causative link between the level of virus expression and the degree of pathological changes in this disease. However, viral expression was not in itself sufficient to cause disease, since significant viral expression was observed in regions that did not exhibit pathological changes (cerebellar cortex, hippocampus, corpus callosum, peripheral nervous system). In both diseased and nondiseased regions, endothelial and glial cells were identified as the main target cells. Neurons in diseased regions did not show viral expression. The regional distribution of the spongiform changes appears to be laid down very early following infection, since expression could be detected at 10 days postinfection in regions that become diseased. These results indicate that nonneuronal cells have distinct properties in various regions of the central nervous system and suggest an indirect mechanism of neuronal loss consequent to viral expression in nonneuronal cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call