Abstract
The t(2;11)(q31;p15) chromosomal translocation results in a fusion between the NUP98 and HOXD13 genes and has been observed in patients with myelodysplastic syndrome (MDS) or acute myelogenous leukemia. We previously showed that expression of the NUP98-HOXD13 (NHD13) fusion gene in transgenic mice results in an invariably fatal MDS; approximately one third of mice die due to complications of severe pancytopenia, and about two thirds progress to a fatal acute leukemia. In the present study, we used retroviral insertional mutagenesis to identify genes that might collaborate with NHD13 as the MDS transformed to an acute leukemia. Newborn NHD13 transgenic mice and littermate controls were infected with the MOL4070LTR retrovirus. The onset of leukemia was accelerated, suggesting a synergistic effect between the NHD13 transgene and the genes neighboring retroviral insertion events. We identified numerous common insertion sites located near protein-coding genes and confirmed dysregulation of a subset of these by expression analyses. Among these genes were Meis1, a known collaborator of HOX and NUP98-HOX fusion genes, and Mn1, a transcriptional coactivator involved in human leukemia through fusion with the TEL gene. Other putative collaborators included Gata2, Erg, and Epor. Of note, we identified a common insertion site that was >100 kb from the nearest coding gene, but within 20 kb of the miR29a/miR29b1 microRNA locus. Both of these miRNA were up-regulated, demonstrating that retroviral insertional mutagenesis can target miRNA loci as well as protein-coding loci. Our data provide new insights into NHD13-mediated leukemogenesis as well as retroviral insertional mutagenesis mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.