Abstract
<abstract><p>We consider a retrospective segmentation and classification problem for GARCH models. Segmentation is the partition of a long time series into homogeneous fragments. A fragment is homogeneous if only one mechanism generates it. The points of "concatenation" of homogeneous segments we call (by analogy with the term used in the stochastic literature) points of disorder or change-points. We call classification the separation of two relatively short time series generated by different mechanisms. By classification, we mean the way in which two groups of time series with unknown generating mechanism (in particularly, generated by GARCH models) can be distinguished, and the new time series can be assigned to the class. Our model free technology is based on our concept of $ \epsilon $-complexity of individual continuous functions. This technology does not use information about the time series generation mechanism. We demonstrate our approach on time series generated by GARCH models. We present simulations and real data analysis results confirming the effectiveness of the methodology.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.