Abstract

Examination of temporally changing adaptive social networks has been difficult given the need for extensive and usually real-time data collection. Building from interdisciplinary advances, the authors propose a web search engine–based method (called retrospective relatedness reconstruction or 3R) for collecting approximated historical data of temporally changing adaptive social networks. As quantifying relatedness among people in social networks leads to difficulty in assigning proper weights to relationship ties, 3R offers a means for assessing relatedness between people over time. Additionally, 3R can be applied beyond people relatedness to include word associations. To illustrate these two novel contributions, the authors reconstructed the temporal evolution of a social network from 2005 to 2009 of 92 individuals (key leaders) related to the U.S. financial crisis and also examined the temporal evolution of social sentiment (i.e., fear, shame, blame, confidence) related to the same 92 individuals. We found several illustrative cases where temporal changes in centrality and/or sentiment captured actual events related to these individuals during this time period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.